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We treat the dynamics of colliding nuclear slabs in a relativistic 

quantum field theory by using the relativistic mean field approximation. 

Starting from Walecka's Lagrangian, the nucleons are represented by single 

particle spinors determined by a Dirac equation that contains a repulsive 

mean vector meson field and an attractive mean scalar meson field. Both 

fields satisfy Klein-Gordon equations whose source terms are again 

determined by the nucleon spinors. The two equal nuclear slabs are 

translationally invariant in two transverse dimensions and consist of spin 

and isospin symmetric nuclear matter. By specification of appropriate 

initial conditions for the collision, we numerically solve the system of 

coupled Dirac and Klein-Gordon equations for lab energies per nucleon up 

to 420 MeV. For small energies the results are similar to TDHF results. 

The time dependence of the density distribution, the mean meson fields, 

and the damping of the collision are studied. At the highest bombarding 

energy retardation effects are taken into account. 
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I. Introduction 

One of the goals of heavy ion physics is to study the properties of 

nuclear matter under extreme conditions, which means at high excitation 

and high density, trying to discover novel phenomena. It is therefore of 

great interest to study the evolution of a nucleus-nucleus collision 

process in a model that has no latitude for an arbitrary selection of 

collective coordinates or any ad hoc parametrization of the dynamics. At 

low bombarding energies. i.e., E /A< 10 MeV, the TDHF-model is a very c.m. 
reasonable microscopic model that leads to a good understanding of the 

dynamical aspects of the fusion and deep inelastic reaction mechanism1). 

Since one solves in the TDHF-model a time~dependent SchrBdinger equation 

using a static nucleon-nucleon interaction, this model is naturally 

restricted to nonrelativistic heavy ion collisions. At relativistically 

high bombarding energies, the cascade model 2) and the nuclear fluid

dynamical model 3) can describe many observed quantities of a relativistic 

heavy ion collision. But still the nuclear collision dynamics at 

intermediate and high energies are not very well understood. At these 

energies a quantum field theoretical model for the colliding many-body 

system on the basis of interacting time-dependent fermion and meson fields 

can give interesting insight in the collision dynamics. 

We introduce in this paper Walecka's relativistic quantum field 

theoretical mean field model 4) in its time-dependent version to describe 

the collision of two nuclear slabs. We shall show that this model is in a 

sense an extension of the TDHF-model to relativistic energies. The justi

fication to describe large amplitude nuclear dynamics in this time 

dependent relativistic mean field model (TDRMF-model) is established by the 

recent successes of the static relativistic mean field model in describing 
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the properties of static nuclear matter4' 5) and the structure of static 

finite nuclei 6- 8). The organization of this paper is as follows. 

In Sec. II the general formalism of the relativistic quantum field 

theoretical model is reviewed and the mean field approximation is 

introduced. In order to limit the computational scope, we have restricted 

our formalism to the dynamics of two equal colliding slabs of spin and 

isospin symmetric nuclear matter. We show in Sec. III that the problem 

reduces to a set of coupled nonlinear equations of Dirac and Klein-Gordon 

type for time-dependent spinors of a single spatial variable. In Sec. IV 

we introduce the Yukawa coupling constants and masses of the mesons and 

present the results of the static slab calculation. How to specify the 

initial condition is discussed in Sec. V. In Sec. VI we critically ask 

for the possible validity of the model, and the results for the collision 

processes are discussed. Finally, in Sec. VII we give a brief summary and 

discuss possibilities for future work that appears promising. The 

numerical methods we used are described in the appendix. 
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II. The Relativistic Field Theory of Nuclear Matter 

A. The General Formalism 

As long as the intrinsic quark structure in a nuclear matter system 

can be ignored--that means as long as the nucleon bags do not overlap--one 

should be able to present the interaction between nucleons by introducing 

a set of meson fields of various spin and isospin with Yukawa coupling to 

the nucleons. A model based on the first two chargeless mesons, the 

sigma-(cr) and the omega-meson (V ), was introduced first by Johnson and 
1l 

Teller9) and by Ouerr10). Later Walecka and collaborators4,ll) 

intensively investigated the model. 

For describing the collision of two slabs of spin and isospin 

symmetric nuclear matter, we introduce as in the standard Walecka model 

the neutral scalar cr-field and the neutral vector meson V -field. The 
11 

Coulomb field is neglected. The Lagrangian density of the Walecka model is 

f. 1 2 1 2 2 1 
= -ijj{y a + m)1)J- -2(a cr) - --rn2 cr - ..;.F4 F 

11 1l 11~ S~ ].1\1 11\1 

- 1n2 
2v v - g \j)1)Jcr + i g \j)y 1)JV 
v ~11 ~11 s ~ v 11 ~\.l 

( 1) 

where 

y are the usual y-matrices, gs and gv Yukawa coup 1 i ng constants, 
11 

ms and mv the seal ar and vector meson masses, m is the nucleon mass. 

1)J is the fermion field. While the first five terms in the Lagrangian are 

the free Lagrangians for the fermion and meson fields, the last two terms 

determine the interaction between the fermion field and the meson fields. 

With the above Lagrangian density the Euler-Lagrange equations yield 

the following coupled field equations. 
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(2a) 

( 2) --o + m a = -g ~W s ~ s (2b) 

(2c) 

Taking into account that the nucleon current is conserved, the Proca Eq. 

(2c) is equivalent to the Klein-Gordon equation 

These equations are fully relativistic and Lorentz covariant. In the 

static approximation the £-field corresponds to an attractive nucleon

nucleon interaction due to a two pion-exchange while the V -field on the 
~~ 

other hand yields a repulsive potential. The strength and range of these 

interactions are determined by the coupling constants and the meson 

masses. These two mesons are sufficient to account for the saturation of 

nuclear matter and a great number of single particle properties of the 

finite nucleus9,lO). 

B. The Mean Field Approximation 

As the source currents in (2b) and (2c') are implicit function of a 

and V because of the Dirac equation (2a) the sets of coupled field 
~~ 

operator equations are very intractable in their present form. J.D. 

Walecka4) proposed to linearize the Dirac Eq. (2a) by substituting the 

field operators a and V by their expectation values and to introduce 
~ ~~ 

the normal ordering of the operators in the source terms in Eqs. (2b) and 

(2c). In this mean field approximation, the effects caused by quantum 

fluctuations about these mean values are neglected. Recent successes in 

describing the properties of finite nuclei 7) demonstrated that the 

effects of quantum fluctuations are not very important. 
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III. The TDRMF-Model for Colliding Nuclear Slabs 

A. The Time-Dependent Field Equations 

We assume the time-dependent relativistic many-body state I¢> that 

describes the system of two equal colliding slabs of spin and isospin 

symmetric nuclear matter to be of I + + + I the form ¢>=a a .•. a 0>. 
al a2 aA 

Here A is the number of nucleons in the system. The a+•sare nucleon 
a 

creation operators and IO> is the vacuum. We expand the fermion field ~ 

in a complete set of time and space dependent Dirac spinor functions f 
a 

and g . The time-dependent solutions of the nucleon field can be 
a 

written as 

-+ "" -+ "" -+ + ~(x,t) = ~f (x,t)a + ~ g (x,t)b 
a a a a a a 

+ where b is an antinucleon creation operator. 
a 

' v = <¢IV I¢> 
ll ~ll 

With the abbreviations 

the mean field approximation leads to the Dirac equation 

J_ 1 a - m* + ig 1 V }f = 0 
l ll ll V ll ll a 

where the mean meson fields obey the Klein-Gordon equations 

(3) 

(4) 

(Sa) 

(5b) 

(5c) 

Here:: defines normal-ordering4) of all expressions with respect to the 

set of operators + + a ,a ,b ,b • 
a a a a 

In order to limit the computational scope in this work, we consider 

here for the nuclear collision the special geometry of two colliding slabs. 

With moving slabs in z-direction, the system is translational invariant in 
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the transverse x-y direction and rotational invariant with respect to any 

axis parallel to the z-axis. Therefore, all expectation values in Eqs. (5) 

are only functions of the spatial variable z and the time, and it is 

v = v = 0 X y 
(6) 

-+ 
Using the standard a and s matrices, Eq. (5a) gets 

( a -+1- ) -i-t + g v + a-rr7-a g v + sm* f ::: 0 ca v o 1 v z v z a (7) 

V
0 

is the time component of v~. Because of the translational invariance 

in the transverse direction f is a product of a plane wave in transverse 
a 

-+ 
coordinates x1 and a wave function in the z coordinate. 

F is an infinite normalizing area in the x-y plane. The subscripts j and 
-+ Ki label the z-quantum number and the transverse wave vector k1 • 

The relativistic wave function f.K is a solution of the Dirac 
J 1 

equation 

-+-+ 
As in ref. 12) we diagonalize the hermitian operator a1 K1 + sm* by a 

unitary transformation U. One finds 

+-+;t A2 2 U (a1 1\1 + em*)U = e 1<.1 + m* 

Introducing the functions f 
A.K J 1 

and f 
B.K J j_ 

+ 
= U f.K 

J 1 

in the form 

(10) 

(11) 
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where x1 =(b) and x2 =(~) , one gets a system of coupled equations 

for the large and small components fA and f8 . 
jK1 jK1 

_!_t fA +(--a - igvvz)rs. 
ca jK1 az JK1 

( 12 a) 

The source terms in (5b) and (5c) can be expressed in terms of the 

functions fA and f8 . The scalar density os' the vector 
jK1 jK1 

density Pv = j 4 and the current in z-direction j
2 

are 

fdK1\q::.2l1\KJ - lfBjKtl ( 13a) 

fdKlKl ~~fAjK112 + lfBjK1121 (13b) 

f l * * } dK K t f + f f r 
1 1 A 'K B 'K A 'K B 'K t 

J 1 J 1 J 1 J 1 ) 
( 13c) 

The factor 4 in front of these expressions is due to the spin and isospin 

degeneracy. 

The factorization of the function f of Eq. (8) has the consequence 
a 

that during the slab collision the initial occupation of the transverse 

wave vector quantum number K1 does not change and the integrations in (13) 

cover at each time the initially fixed domains, which depend themselves on 

j. As in a one-dimensional TDHF-calculation this omission of freedom of 

changes in the transverse directions means a rather severe limitation to 

the relativistic many-body wavefunction and has certainly implications 

regarding the physical applicability of our calculations. 
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The concept of calculating the nuclear slab collision in the 

TDRMF-model is now essentially as follows. With the appropriate initial 

conditions for the relativistic many-body wavefunction for two approaching 

nuclear slabs, which will be discussed in Sec. V, we calculate the source 

terms given by the expressions in Eqs. (13). The meson fields cr, V and 
0 

Vz are then determined by solving the Klein-Gordon equations 

a2cr a2cr 2 
c2at2 - az2 + mscr = -gsps ( 14a) 

a2v a2v 
0 - __ o + m2v 

c2at2 az2 v o 
:::: gVpV ( 14b) 

a2v a2v 
m2v z z 

gvjz 
c2at2 --2- + = 

az v z ( 14b) 

where the scalar density in Eq. (14a) is itself a function of cr. Using 

these fields in the set of coupled Eqs. (12) we determine the small and 

large components of the functions f at each point in space at an 

infinitesimally later time. With these new functions f we calculate the 

source terms again, and so on. The numerical methods we use to solve 

these equations are discussed in the appendix. 

B. The Total Energy and Momentum 

During the collision process the momentum four vector of the system 

is conserved. This four vector can be expressed in terms of the stress 

tensor T 4,13) 
].1\1 

+· 1 Jd3x T 4v 
1 (15) ( p ,if) =~ 

lC 

where 
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T 
J.IV 

av 
+ \f>Y ~+~~- A. F 

J.1 ax X X X, AJ.I v v j.l 1\ 

(16) 

In the case of colliding slabs this gives for the energy per unit area 

f = fdz l i<~l=~+ c!t ~:I~> 

+ ;L2 + ~(~:S + (:~)2 + ~(:~~)2 -~(:~o; 2 
- l m2v2 + l m2v2l 

2 v o 2 v z~ 
( 17) 

For the momentum per unit area one gets 

J l + 1 a 
dz <<PI=l/J T az lj;: I<P> (18) 

The first part of the integrant belongs to the nucleon momentum density; 

the last two parts refer to the momentum density caused by the meson 

fields. An instructive quantity is the half side momentum per unit area, 

which we define by integration only along the positive z-axis. After the 

collision, if the slabs are separated again, this quantity determines the 

intrinsic excitation of the system. 
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IV. The Static Slab 

A. Parameters, Formal ism and Results 

First of all, we want to specify the parameters in the model, which 

are the Yukawa coupling constants gs and gv as well as the sigma-meson 

mass m and the omega-meson mass m • It was shown by J. Boguta7) 
s v 

that the mass of the sigma-meson is determined in the static mean field 

calculation for nuclei by fitting the surface thickness of the nucleus. 

An acceptable range is 500 MeV ~m ~525 MeV. As in ref. 7), we choose s 

ms = 500 MeV and for the omega-meson mass mv = 780 MeV. The ratios 

Cs = (gs/ms)m and Cv = (gv/mv)m are determined by the binding 

energy per nucleon in infinite symmetric nuclear matter at saturation 

density. With a saturating Fermi momentum of KF = 1.34 fm-1 and a 

corresponding energy per nucleon of -15.75 MeV, one gets Cs = 17.95 and 

Cv = 15.60. These parameters are similar to those determined by J.D. 

Walecka4). We use the above enumerated values of the coupling constants 

and masses to solve the static slab problem as well as the dynamical 

collision problem. 

To calculate the nuclear collisions of two equal slabs in the c.m. 

frame, we have to prepare the appropriate initial condition for slabs 

approaching with a certain velocity. As the Dirac equation is Lorentz 

covariant, the initial spinors can be constructed from the static spinors 

by an inhomogeneous Lorentz transformation. Therefore, we first consider 

the problem of a static nuclear slab. In order to construct a solution we 

have to solve self-consistently the static Dirac equation. 

a ~ 

i(e:jKl- gvVo· -~K2 + m*2) f -f = az BjKl A.K 
J 1 

(19a) 

a ~ 

i(e:jKl- gvVo +~K2 + m*2) f -f ::::: 

az AjKl B.K 
J 1 

(19b) 
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£jK
1 

is the single nucleon energy including its rest-mass in a state 

characterized by the quantum numbers j and K1 . With the replacement 

A -f :::: i f ( 20) B.K B.K 
J 1 J 1 

the system (19) becomes purely real. The relativistic many-body ground 

state of the slab will correspond to the occupation of all single nucleon 

states with energy £jK
1 

below the energy EF + m, where EF is the 

Fermi energy. A constraint to the self-consistent procedure is that the 

number of nucleons per unit area in the x-y plane, defined as 
00 

~. J ov(z)dz ( 21) 

-co 

remains constant. Since the spinors are normalized to one we get by using 

Eq. (13b) 

Here K1 is the maximum transverse momentum defined by 
max 

€ jK1 "" €F + m • 
max 

The sum in Eq. (22) is therefore restricted to those z-quantum numbers 

where Ejo ~ eF + m. N is the number of possible z-quantum numbers. 

Numerically we found 

where 

K 2 
1 

e jK1 ::::! e jo + 2<m*> 

(22) 

(23) 

( 24) 

(25) 
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This is due to the fact that the transverse kinetic energy of the nucleons 

is small compared to its average effective mass <m*>. 

With Eq. (24) one gets instead of (22) the constraint 

A 1 N --- L: F - 1T • 
J 

~ ~ 

The dependence of the functions f and f on the transverse 
B.K A.K 

J 1 J 1 
wave number causes a substantial numerical complication and lets the 

problem appear numerically as a two-dimensional one. To avoid this 

complication we take advantage of the rather weak dependence of the 

functions fA and fB on K1 and consider for simplicity these functions 

(26) 

at only one constant value of Ki' namely, K1 = 0. This approximation, as 

we will show, leads to a very appropriate result for the static slab. As 

the slab collision geometry omits in an unrealistic way the freedom of 

changes in the transverse direction and K1 therefore appears as an unreal, 

artificial quantum number, the above approximation is directly suggested. 

Therefore, we use the approach 

(27) 

Thus, while the structure of the resulting problem is no more difficult 

computationally than a genuine one-dimensional problem, we may use the 

three-dimensional phase space and the Yukawa coupling constants as well as 

the meson masses determined by earlier three-dimensional static 

calculations for spherical nuclei. 

With Eq. (27) the integrals in Eqs. (13) can easily be performed and 

the scalar and vector densities become 
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2 N ~~2 2 p s = - ,4: m* K 1 + m* -
1T J max lm*l!)lfAjol2- lfsjol21 (28a) 

lifAjl + lfsjll· (28b) 

In the static case the solutions of the Klein-Gordon Eqs. (14a) and (14b) 

can be expressed in terms of Greensfunctions 12 ). One obtains 

-g s 
cr(z) = 2ri1 

s J -m 1z-z' 1 
e s Ps(z')dz' (29a) 

(29b) 

As Ps(z') depends on cr(z') because of Eq. (28a), the above Eq. (29a) is 

an integral equation for cr. 

Now, the concept of finding the self-consistent static slab solution 

is as follows. For a given number of nucleons per unit area we assume 

appropriate vector and scalar densities p and p • With these we 
v s 

determine the integral in Eq. (29b) and solve the integral equation 

(29a). With the resulting meson fields the eigenvalue problem (19) 

with regard to the boundary condition for the wavefunctions is solved. 

The constraint of Eq. (26) determines the maximum transverse momenta and 

the number of occupied states. Then by using Eqs. (28) new vector and 

scalar densities are determined. We go through this procedure until self-

consistency is reached. 

We discuss now the numerical results we get for the static slab. To 

compare our results with those one obtains from a corresponding TDHF-slab 

calculation, we choose for the number of nucleons per unit area A/F = 
-2 1.4 fm . This is the value for which most of the slab collision 
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calculations in ref. 14) have been done. As in ref. 14) we find the 

number N of occupied z-quantum numbers to be 4. The Fermi energy in our 

case is -10.43 MeV. The average effective mass <m*> has the value 545 MeV. 

J.D. Walecka4) got for infinite nuclear matter (KF = 1.42 fm-1) for 

the effective mass m* = 526 MeV. The single particle energies €jO as 

well as the maximum occupied transverse momentum Klmax are listed in 

table 1. That the low-lying states are stronger bound than in a 

nonrelativistic Hartree calculation is a characteristic of the 

relativistic mean field model 7). Here this is even reinforced by the 

approximation (27), which leads to a smaller thickness and a higher 

central density of the system than one would actually get. 

Figure 1 shows the large and small components of the relativistic 

nucleon wavefunctions. Figure 2 displays the nucleon density Pv and the 

scalar density Ps· Because of reflection symmetry with respect to the 

slab center, only half of each distribution is plotted. The thickness of 

the slab corresponds to a nucleus with A ~ 35. That the density distribu-

tions show almost no fluctuations is because the higher lying orbits are 

muc~ less weighted than the lower ones. This is clearly seen from Eqs. 

(28). The small components in the wavefunctions even smooth the densities. 

Because of the smallness of the small component the scalar density is 

similar to the vector density. This is different in the case of colliding 

slabs having velocities close to the velocity of light. Figure 3 shows the 

strengths of the scalar field and the time component of the vector field. 

Both fields have opposite signs and are in its absolute value almost an 

order of magnitude larger than a nonrelativistic single particle potential. 
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B. Relation to the Nonrelativistic Hartree Concept 

We want to rewrite the system of Eqs. (19) to see the relation to a 

nonrelativistic Hartree calculation. Expressing the small component in 

Eqs. (19) in terms of the large component, one obtains a Schrodinger 

equation for fAjO with a single particle potential Ueff. 

Here 

and 

x = € ·o- g v + 1m* I • J v 0 

(30) 

(31) 

(32) 

The leading term in this nonlocal and energy dependent potential Ueff is 

gsa + gvV
0

, the sum of an attractive and a repulsive meson field. 

The third term in Eq. (31) is repulsive and lowers the overall attraction 

of the first two terms by almost 50%?). 

The Darwin potential and the energy-dependent terms in expression (31) 

do not contribute much if fA describes a single nucleon bound state. 

Neglecting the contribution from the small components, the scalar and the 

vector densities are identical. Considering now only the first three 

terms in Ueff the Eq. (30) corresponds to a Hartree problem where the 

nucleon-nucleon interaction is a density dependent one of Yukawa type. 
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(33) 

To derive Eq. (33) we approximated one factor in the quadratic expressions 

in the third term of Eq. (31) due to the short range of the Greensfunctions 

in Eqs. (29) by 

( 34a) 

and 

(34b) 

respectively. 
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V. Initial Condition for Two Colliding Nuclear Slabs 

As the Dirac equation (7) is Lorentz covariant the wave functions belonging 

to slabs which move with velocities -v and +v can be constructed from the 

above described static wave functions by the use of an inhomogeneous 

Lorentz transformation15 ). Characterizing the c.m. system of the 

colliding slabs by primes, one gets for the spinors at the time t' = 0 for 

the right slab 

(35) 

where 

~, v2)-1/2 
Y= 1--:2 

. c 
, tanh v 

w =--c (36) 

az is the z-component of the ;-matrix. z
0 

is the central location of 

the right slab at t' = 0. z~ has to be chosen large enough so that the 

slabs still do not interact with each other. Eq. (35) gives for the large 

and small components of the right slab up to a constant redundant phase 

factor at t' = 0 

. • V I 

fAj
0
(z',O) = {cash(l)fAj0 (v(z'-z~)) + sinh(l)f8j0 (v(z'-z~))}e-''jo c;:la) 

fBj
0

(z',O) = {sinh(l)fAj0 (v(z'-z~)) + cosh(l)f8j0 (v(z'-z~))}e-i'jO ~:~b) 
Here f and f are solutions of the static Dirac Eq. (19). As 

Ajo Bjo 
the collision problem is assumed to be symmetric with respect to the 

origin of the c.m. system, we can construct the spinors of the left slab 

using the parity operator P. 
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Pf I ( z I 't I ) :;:: i y f I ( z I t I ) 

a o a ' 
(38) 

One can easily prove using Eqs. (37) and (13) that one gets for the right 

side slab the relations 

(39a) 

(39b) 

j
2
1 (Z 1 ,0) v 1 (Z 1 0) =- ?v ' (39c) 

as one would expect. The kinetic energy per nucleon of two equal 

approaching slabs in the c.m. frame neglecting binding effects is 

Ecm 
A= m(y - 1) (40) 



-20-

VI. Results and Discussion 

Before we discuss the results we get in the TDRMF-model for the 

nuclear slab collision dynamics at different energies, we ask the question 

how reasonable the Lagrangian (1) with the above chosen parameter might be 

to describe nuclear collisions up to relativistically high energies. 

At low energies of Ecm/A < 5 MeV, where during the collision the 

density increases to only slightly more than saturation density p
0

, the 

Lagrangian (1) and the chosen parameters are certainly reasonable due to 

the fact that the structure of static nuclei is described fairly well. 

Even at moderately high energies Ecm/A < 40 MeV, one is encouraged by the 

excellent prediction for the energy dependence of the single particle mean 

potential. 

For a nucleon of energy € moving through symmetric infinite nuclear 

matter (KF = 1.34 fm-1) we obtain by solving the field Eqs. (5b) and 

(5c) for the mean potential of Eq. (31) 

Ueff = -47.16 MeV+ 0.367(€-m) - 5.325 10-4(€-m) 2/MeV (41) 

Figure 4 shows the good agreement with the experimentally determined 

phenomenological real part of the optical potential 16 ) up to energies of 

140 MeV. A comparison at even higher energies is difficult because of the 

not-well-known dispersion relation for Ueff 17 ). 

At very high energies where E m /A > 500 MeV, the density during c. . 

the slab collision might increase to more than 2yp
0 

and the question 

arises how important three-, four-, etc. body interactions become. Such 

forces can be incorporated by a nonlinear scalar field5' 12 ) and a nonlinear 

vector field interaction. The nonlinear vector meson field might lead to a 

very strong repulsion for the penetrating slabs. At high bombarding 
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energies heavier mesons and nucleon resonances become certainly important 

and in principal could be included in the Lagrangian (1). Moreover, the 

existence of a pion field could contribute to the dynamics and, because of 

the time-dependent source terms, radiation of pions would occur. 

Since the simple Lagrangian (1) might be not very reliable at very 

high bombarding energies, we restricted the energy domain we consider in 

this paper toE /A~ 100 MeV, which corresponds to a lab bombarding c.m. 
energy per nucleon of 421 MeV. 

We discuss now the essential features of the results we get for the 

colliding slabs. To compare the low-energy results of the TDRMF-model 

with those of the TDHF-model we calculated the nuclear slab collision at 

the low energy of E /A = 3.5 MeV and at the intermediate energies of c.m. 
E /A = 25 MeV and 50 MeV. The results we get for the 3.5 MeV slab c.m. 
collision are shown in Fig. 5. This reaction typifies a deep inelastic 

process in which the system separates directly after having formed a 

compound system. The initial dynamics is characterized by only a slight 

increase in density due to the fact that the system has enough time to 

relax. Shortly before scission, density oscillations appear and, after the 

fragments have been formed, the density fluctuations slash back and forth 

in the two outcoming fragments. By calculating the half side momentum, we 

find that after separation the excitation per nucleon is about 2.4 MeV, 

which means that the process is strongly damped. An almost identical 

behavior for the density profiles of the slabs and a similar damping was 

found for the corresponding TDHF-calculation in ref. 14). For slab colli

sions at the intermediate energies of Ecm/A = 25 MeV and 50 MeV we find 

a different result (see Figs. 6 and 7). As in the TDHF-calculation the 
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central nuclear density increases to -1.7p , however, the density 
0 

profiles for the outcoming fragments look different. The characteristic 

of the TDHF-slab result at these energies is that after the compound 

system has formed, lumps appear at the nuclear surface and at least two of 

them separate off from the rest of the system. The velocity of the first 

lump is larger than the velocity of the incoming slab. In our case there 

is no lump formation at the surface. Instead of this, during the 

separation process of the slabs, a neck of matter between them is formed, 

which contracts to two clusters which move much slower than the primary 

fragments. At 100 MeV not even this is the case up to a time of 

1.4 lo-22 sec as shown in Fig. 8. 

Up to now all the calculations have been done by neglecting the second 

time derivative in the Klein-Gordon Eqs. (14) assuming that retardation 

effects at these energies are still not very important. To see the 

influence of retardation, we have calculated the collision process for 

E /A = 100 MeV by solving numerically the time dependent Klein-Gordon c.m. 
Eqs. (14) simultaneously with Eqs. (12). The result is shown as dashed 

lines in Fig. 8. The retardation effects smooth the density profile but 

do not lead to a different type of dynamics. The study of retardation 

effects at even higher energies is under investigation and we will report 

about these results elsewhere. 

The slab dynamic is determined by the strength of the meson fields and 

the fermion spinors that are self-consistently coupled to them. Therefore, 

it is worthwhile to discuss the differences in the behavior of the meson 

fields at low and high slab bombarding energies. Figure 9 shows the 

scalar meson field as well as the space and time component of the vector 

meson field at three different moments during the collision process at 
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E /A = 3.5 MeV. The times considered here are at the beginning before c.m. 
the slabs touch, when they form a compound system and when they are almost 

separated again. Because of the symmetry of the problem, only one-half of 

the fields is drawn. In Fig. 10 these meson fields are plotted in the 

case of Ec.m./A = 100 MeV. As we know from the static slab calculation, 

the cr-field is in its absolute strength comparable to the V
0
-field. The 

fact that the cr-field in its absolute value is slightly larger than the 

V
0
-field leads to a bound nuclear slab system. Just so in the nuclear 

slab dynamics where the system is very sensitive to slight relative changes 

of the strengths of the meson fields. In Fig. 9 the sum of the scalar and 

vector field is always negative, which corresponds in a nonrelativistic 

Hartree-theory to an attractive single particle potential. In the case of 

Ec.M./A = 100 MeV, during the stage of penetration, the repulsive time 

component of the vector meson field becomes even larger than the absolute 

value of the scalar field. This leads to a net repulsion between both 

slabs. At even higher energies, these effects will become more dominant 

and an interesting dynamic of repelling slabs can be expected. Such a 

strong repulsion, which builds up rapidly in time when the slabs start to 

penetrate, leads to internal excitations of the system. 

We find that the kinetic energy loss for the Ec.M./A = 100 MeV 

collision is about 12% and the slabs are therefore quite transparent. 

From heavy ion experiments at these energies, one would expect for a 

central collision a much more violent reaction. There are several reasons 

that might be responsible for this transparent behavior. One is that, due 

to the relativistic mean field approximation, the time dependent 

relativistic many-body state is at each time restricted to a single spinor 

Slater-determinant. This certaintly restricts the degrees of freedom of 
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the system and prohibits possible excitation modes. Another reason is the 

substantial omission of changes in the transverse direction due to the 

special slab geometry. In a realistic three-dimensional calculation where 

the transverse direction is not frozen, the mutual repulsion at high 

energies will lead to transverse instabilities and energy will flow into 

omitted modes. At E /A = 100 MeV, the nucleon ~-resonance will also c.m. 
contribute to the energy dissipation. 
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VI I. Summary 

We have shown that the TDRMF-model is very attractive to describe the 

dynamics of nuclear collisions since it describes the many-body collision 

problem from the basis of the relativistic quantum field theory. In this 

model the behavior of the fermion field is rather sensitive to small 

changes in the absolute size of the two meson fields. In the case of 

colliding nuclear slabs, the TDRMF-model agrees at low energies with 

corresponding calculations done in the TDHF-model. 14 ) For intermediate 

bombarding energies the TDRMF-model predicts a different dynamical 

behavior in the late stage of the reaction. Since this model is based on 

a relativistic quantum field theoretical concept, it includes at these 

intermediate energies already important relativistic effects. At the 

energy of Ec /A = 100 MeV, there appears a net repulsion between the • m. 
slabs but nevertheless the slabs are unrealistically transparent. This 

might be due to the omission of excitation modes in the mean field 

approximation, the restricted degrees of freedom in the special slab 

collision geometry, and to the incompleteness of the Lagrangian (1). We 

found that retardation effects do not modify the dynamical process 

considerably at an energy of 100 MeV. 

Since we have shown that the slab collision problem in the TDRMF-model 

is numerically manageable, there are several very promising possibilities 

of future work. 

First of all, to investigate the nuclear slab dynamics for even higher 

energies than reported here, using a more realistic Lagrangian, is of great 

interest. Furthermore, by including a-resonances, the effects of the 

recently theoretically proposed "a-resonance isomer"l~) on the collision 

dynamics could be studied. The question on the existence of a pion 
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condensate during a heavy ion collision and, particularly, its effects on 

the collision dynamics could be answered by including the pion field in the 

Lagrangian (1) as it was done in ref. 5) for static infinite nuclear 

matter. Moreover, as the fields change rapidly during the collision, they 

will act as a source for pion radiation. Beside this, the extension of 

the calculations to a realistic three-dimensional computation is certainly 

desirable. 
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Appendix 

Numerical methods for solving self-consistently the static slab problem 

For A/F = 1.4 fm-2 and K1 = 0 the system of Eqs. (19) by using Eqs. 

(28) and (29) with the constraint (26) is solved self-consistently. By 

denoting with k AZ the space coordinate at the mesh point k and using for 

the space derivatives a two point formula, the Eqs. (19) become 

(Ala) 

(Alb) 

where 

(A2) 

The use of the right side two point difference formula in (Ala) and the 

left side difference formula in (Alb) has the advantage to write Eqs. (Al) 

easily in form of an eigenvalue problem where the matrix is a symmetric 

band matrix with only two off diagonals. The boundary conditions for the 

functions rA and fB are included by the fact that the matrix we 

diagonalize is of finite dimension. 19 ) For the mesh size we choose 

AZ = 0.25 fm; the z-coordinate interval is [-12 fm, 12 fm]. 

To calculate the integrals in Eqs. (29) we use the same method the 

authors of ref. 14)* used to determine their Hartree-potential. With. this 

at each mesh point k the second order finite difference approximation is 

used for the scalar and vector densities. The scalar and vector fields 

*There in formula A7 for X 0 the factor 2 has to be deleted. 
Q= 
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can then be expressed as a sum over integrals times the corresponding 

density at different mesh points. The integrals themselves can easily be 

calculated analytically. As the equation for the scalar field is an 

integral equation, we find the solution by iterations. Calculating first 

pi by using a previous cri-1, we determine with Eq. (29a) a new cri s 
and repeat this procedure five times, which is in our case sufficient. We 

found that the iterative solution for the densities is very much improved 

by using the average of the two most recent solutions 

-i+1 1 ( i i+1) 
Ps/v = 2 Ps/v + Ps/v • (A3) 

We start the iteration using for the vector density the result for the 

nuclear density in the corresponding Hartree-calculation of ref. 14). The 

scalar density is assumed to be 0.93 times the vector density. After 36 

iterations we find a precision for the densities at each mesh point of 

-10-4• For the energies the accuracy is about the same. 

Numerical methods for solving the time dependent equations 

We solve the system (12), which is coupled by the meson fields to the 

Klein-Gordon Eqs. (14) for K1 = 0, by using an implicit difference 

method. 20) For the time and space derivatives at the space-time point 

(kaz, nat) we take the mid point formula. The functions fA and ¥8 in 

the Eqs. (12) are replaced by their mean values determined by the earlier 

and later time step. With this one obtains 

(A4a) 
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(A4b) 

Here 

f = e- imct r . (AS) 

With this replacement, one gets rid of the fast time oscillations of the 

relativistic wave function caused by the rest-mass of the nucleons. 

We resolve the system (A4) with respect to the real and imaginary 
-:i1 + 1 -:::fl + 1 

parts of fAk and f 8 • To stabilize the above algorithm we replace after 

having determined f0~1 the functions fO by 

-::n+ 1 and recalculate f • 

As the system is symmetric with respect to the origin of the c.m. 

frame, we have to calculate only those spinors that belong initially to 

the right side slab. The remaining spinors are determined by using the 

parity operator of Eq. (38). 

(A6) 

At low and intermediate bombarding energies, retardation effects are 

believed to be less important. In these cases we solve simultaneously with 

Eqs. (A4) the Klein-Gordon equations (14) by neglecting the second time 

derivative in the D'Alembert-operator. This means we use Eqs. (29) and the 

corresponding one for the space component Vz of the vector meson field. 

For the high slab collision energy Ec.m./A = 100 MeV, we take the 

correct D'Alembert-operator in the Klein-Gordon Eqs. (14) into account to 

see what the effect of retardation is. The time-dependent Klein-Gordon 
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equations are solved numerically by using the difference scheme proposed 

by Courant et al •21 ). Instead of solving the Klein-Gordon equation 

(A7) 

(U is now representative for the meson fields, M for their masses, and p 

for the scalar- and vector density or the current) one can calculate the 

equivalent coupled system of partial differential equations, namely 

(A8a) 

(A8b) 

Using forward time differences, central space differences, and substituting 

U~, V~, and p~ by their average values22 ), which one gets from the 

adjacent left and right space mesh points, the scheme that results from 

Eqs. (A8) is 

(A9a) 

Vn+1 
k ::::: 

n n 2( n n ) ( n n ] [(1+r)Vk+1 + (1-r)Vk_1 - M Uk+1 + Uk_1 c~t + pk+1 + Pk_1 )c~t /2 
(A9b) 

here r = c~t/~z. 

The initial conditions for U and V are determined by the approaching slabs 

which move with constant velocity. 

A criterion for the accuracy of the algorithm described above is the 

change of the metric of the relativistic wave functions and the change of 

the total energy of the system during the slab collision. The mesh sizes 

(~z, c~t) we have chosen, which give as we think sufficient accuracy and 

computation time still does not become prohibitive, are in units of fm for 

Ecm/A = 3.5 MeV: (0.25/y, 1.25 10-2), for 25 MeV: (0.25/y, 1.25 10-2), 
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( -3 -3 for 50 MeV: 0.125/y, 6.25 10 ), and for 100 MeV: (0.125/y, 4.4 10 ). 

Here y is they-factor of Eq. (36). Therefore, a typical calculation 

involves between 200 400 points in z and 8000 to 16000 steps in time. 

Until the end of the reaction where the slabs are well separated again, 

the metric of the spinors changed less than 1%. The total energy of the 

system changed by less than :Q.4%. 

The neglect of the second derivative in the Klein-Gordon Eqs. (14) in 

those cases in which we do not consider retardation effects causes that 

the expression (17) for the total energy is no longer a strictly conserved 

quantity. Adding formally the amount of energy change, one gets an 

expression in terms of the fields that is strictly conserved. For the 

numerical computation of the energy and momentum in Eqs. (17) and (18), 

the time derivatives are approximated by two point backward differences 

and for the space derivatives mid point differences are used. The 

integration was done by using Simpson's 1/3-rule. To determine the 

initial wave functions when we use the mesh size ~z = 0.125 fm a quadratic 

two side interpolation is used. 
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Table 1 

j 1 2 3 4 

~:: . - m (MeV) JO -74.15 -59.60 -41.54 -23.56 

K (j) (fm-1) 1.336 1.173 0.933 0.606 
lmax 

Single particle energies Ejo and the maximum occupied transverse momenta 

\ (j). 
max 
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Figure captions 

Fig. 1. The large component f {full curve) and the small component 
Ajo 

f (dashed curve) of the four different relativistic 
Bjo 

nuclear wave functions with K1 = 0 for the static slab. The 

small component is stretched by the factor 10. 

Fig. 2. Nucleon density Pv(z) and scalar density ps{z) for the 

static slab of A/F = 1.4 fm-2. 

Fig. 3. The scalar field gscr{z) and the time component of the vector 

field gvV
0
{z) for the static slab of A/F = 1.4 fm-2. 

Fig. 4. The experimentally found energy-dependent depth of the real part 

of the optical potential and the single nucleon potential Ueff 

of Eq. {31). 

Fig. 5. Nucleon density profiles Pv(z,t) for two colliding nuclear 

slabs for Ec.m./A = 3.5 MeV at different times in units of 

1o-21 s. The total A/F is 2.8 fm-2• Retardation effects 

Fig. 6. 

Fig. 7. 

Fig. 8. 

are not taken into account. 

The same as in Fig. 5 for Ec.m./A = 25 MeV. 

The same as in Fig. 5 forE /A= 50 MeV. c.m. 
The nucleon density profiles p {z,t) for two colliding nuclear v 
slabs for E /A= 100 MeV at different times in units of c.m. 
1o-21 s. The total A/F is 2.8 fm-2• The full curves show 

the results without taking retardation effects into account. 

The dashed curves show the results if the Klein-Gordon equations 

for the meson fields are solved exactly. 

Fig. 9. The scalar field gscr{z,t) and the space and time components of 

the vector fields gvVz(z,t) and gvV
0
(z,t) at three 

different times during the reaction for Ec.m./A = 3.5 MeV. 

The time is in units of 1o-21 s. 

Fig. 10. The same as in Fig. 9 at a bombarding energy of Ec.m./A = 100 MeV. 
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